资源类型

期刊论文 1098

年份

2024 1

2023 148

2022 147

2021 140

2020 94

2019 54

2018 45

2017 60

2016 45

2015 51

2014 37

2013 44

2012 30

2011 31

2010 29

2009 37

2008 19

2007 29

2006 8

2005 4

展开 ︾

关键词

3D打印 13

增材制造 7

Cu(In 4

Ga)Se2 3

光催化 3

3D生物打印 2

4D打印 2

CCS 2

CO2利用 2

CO2封存 2

CO2捕集 2

FY-3卫星 2

二氧化碳 2

催化剂 2

支架 2

碳中和 2

纳米颗粒 2

组织工程 2

风云三号 2

展开 ︾

检索范围:

排序: 展示方式:

Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and sacrificing nanofillers

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 745-754 doi: 10.1007/s11705-021-2038-x

摘要: Selective swelling of block copolymers of polysulfone-b-poly(ethylene glycol) is an emerging strategy to prepare new types of polysulfone ultrafiltration membranes. Herein, we prepared nanoporous polysulfone-b-poly(ethylene glycol) ultrafiltration membranes by selective swelling and further promoted their porosity and ultrafiltration performances by using CaCO3 nanoparticles as the sacrificial nanofillers. Different contents of CaCO3 nanoparticles were doped into the solution of polysulfone-b-poly(ethylene glycol), and thus obtained suspensions were used to prepare both self-supported and bi-layered composite structures. Selective swelling was performed on the obtained block copolymer structures in the solvent pair of ethanol/acetone, producing nanoporous membranes with poly(ethylene glycol) lined along pore walls. The CaCO3 nanoparticles dispersed in polysulfone-b-poly(ethylene glycol) were subsequently etched away by hydrochloric acid and the spaces initially occupied by CaCO3 provided extra pores to the block copolymer layers. The porosity of the membranes was increased with increasing CaCO3 content up to 41%, but further increase in the CaCO3 content led to partial collapse of the membrane. The sacrificial CaCO3 particles provided extra pores and enhanced the connectivity between adjacent pores. Consequently, the membranes prepared under optimized conditions exhibited up to 80% increase in water permeance with slight decrease in rejection compared to neat membranes without the use of sacrificial CaCO3 particles.

关键词: block copolymers     selective swelling     ultrafiltration     CaCO3 nanoparticles     sacrificial nanofillers    

Formation of CaCO hollow microspheres in carbonated distiller waste from Solvay soda ash plants

《化学科学与工程前沿(英文)》   页码 1659-1671 doi: 10.1007/s11705-022-2173-z

摘要: For decades, distiller waste and CO2 were not the first choice for production of high valued products. Here, CaCO3 hollow microspheres, a high-value product was synthesized from such a reaction system. The synthetic methods, the formation mechanism and operational cost were discussed. When 2.5 L·min–1·L–1 CO2 was flowed into distiller waste (pH = 11.4), spheres with 4–13 μm diameters and about 2 μm shell thickness were obtained. It is found that there is a transformation of CaCO3 particles from solid-cubic nuclei to hollow spheres. Firstly, the Ca(OH)2 in the distiller waste stimulated the nucleation of calcite with a non-template effect and further maintained the calcite form and prevented the formation of vaterite. Therefore, in absence of auxiliaries, the formation of hollow structures mainly depended on the growth and aging of CaCO3. Studies on the crystal morphology and its changes during the growth process point to the inside–out Ostwald effect in the formation of hollow spheres. Change in chemical properties of the bulk solution caused changes in interfacial tension and interfacial energy, which promoted the morphological transformation of CaCO3 particles from cubic calcite to spherical clusters. Finally, the flow process for absorption of CO2 by distiller waste was designed and found profitable.

关键词: distiller waste     CO2     hollow microsphere     CaCO3     Ca(OH)2     inside−out Ostwald effect    

Enhanced 4-chlorophenol biodegradation by integrating FeO nanoparticles into an anaerobic reactor: Long-term

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1519-6

摘要:

• 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system.

关键词: Dechlorination     Fe2O3 nanoparticles     Electron transfer     Microbial community    

osmosis coupled with lime-soda ash softening for volume minimization of reverse osmosis concentrate and CaCO<sub>3sub> recovery: A case study on the coal chemical industry

Jiandong Lu, Shijie You, Xiuheng Wang

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1301-6

摘要: Abstract • Forward osmosis (FO) coupled with chemical softening for CCI ROC minimization • Effective removal of scale precursor ions by lime-soda ash softening • Enhanced water recovery from 54% to 86% by mitigation of FO membrane scaling • High-purity CaCO3 was recovered from the softening sludge • Membrane cleaning efficiency of 88.5% was obtained by EDTA for softened ROC Reverse osmosis (RO) is frequently used for water reclamation from treated wastewater or desalination plants. The RO concentrate (ROC) produced from the coal chemical industry (CCI) generally contains refractory organic pollutants and extremely high-concentration inorganic salts with a dissolved solids content of more than 20 g/L contributed by inorganic ions, such as Na+, Ca2+, Mg2+, Cl−, and SO42−. To address this issue, in this study, we focused on coupling forward osmosis (FO) with chemical softening (FO-CS) for the volume minimization of CCI ROC and the recovery of valuable resources in the form of CaCO3. In the case of the real raw CCI ROC, softening treatment by lime-soda ash was shown to effectively remove Ca2+/Ba2+ (>98.5%) and Mg2+/Sr2+/Si (>80%), as well as significantly mitigate membrane scaling during FO. The softened ROC and raw ROC corresponded to a maximum water recovery of 86% and 54%, respectively. During cyclic FO tests (4 × 10 h), a 27% decline in the water flux was observed for raw ROC, whereas only 4% was observed for softened ROC. The cleaning efficiency using EDTA was also found to be considerably higher for softened ROC (88.5%) than that for raw ROC (49.0%). In addition, CaCO3 (92.2% purity) was recovered from the softening sludge with an average yield of 5.6 kg/m3 treated ROC. This study provides a proof-of-concept demonstration of the FO-CS coupling process for ROC volume minimization and valuable resources recovery, which makes the treatment of CCI ROC more efficient and more economical.

关键词: Coal chemical industry     Forward osmosis     Chemical softening     Reverse osmosis concentrate    

Fe<sub>3sub>O<sub>4sub> encapsulated mesoporous silica nanospheres with tunable size and large void

Tingting LIU, Lihong LIU, Jian LIU, Shaomin LIU, Shi Zhang QIAO

《化学科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 114-122 doi: 10.1007/s11705-014-1413-2

摘要: Magnetic Fe O and mesoporous silica core-shell nanospheres with tunable size from 110–800 nm were synthesized via a one step self-assembly method. The morphological, structural, textural, and magnetic properties were well-characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N adsorption-desorption and magnetometer. These nanocomposites, which possess high surface area, large pore volume and well-defined pore size, exhibit two dimensional hexagonal ( 6mm) mesostructures. Interestingly, magnetic core and mesoporous silica shell nanocomposites with large void pore (20 nm) on the shell were generated by increasing the ratio of ethanol/water. Additionally, the obtained nanocomposites combined magnetization response and large void pore, implying the possibility of applications in drug/gene targeting delivery. The cell internalization capacity of NH -functionalized nanocomposites in the case of cancer cells (HeLa cells) was exemplified to demonstrate their nano-medicine application.

关键词: mesoporous silicas     magnetic nanoparticles     core-shell nanoparticles     cell uptake    

Effects of iron oxide nanoparticles on phenotype and metabolite changes in hemp clones ( L.)

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1569-9

摘要:

● Fe3O4 NPs increased the biomass and chlorophyll content of hemp clones.

关键词: Fe3O4 nanoparticle     Hemp     Growth enhancement     THC     Metabolite    

A magnetic adsorbent based on salicylic acid-immobilized magnetite nano-particles for pre-concentration of Cd(II) ions

Hossein Abdolmohammad-Zadeh, Arezu Salimi

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 450-459 doi: 10.1007/s11705-020-1930-0

摘要: In this research, an eco-friendly magnetic adsorbent based on Fe O /salicylic acid nanocomposite was fabricated using a facile one-pot co-precipitation method. The crystalline and morphological characterization of the prepared nanocomposite was performed by field emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The nanocomposite was employed as a magnetic solid-phase extraction agent for separation of Cd(II) ions from synthetic solutions. Some experimental factors affecting the extraction efficiency were investigated and optimized. Following elution with acetic acid (pH 3.5), the pre-concentrated analyte was quantified by flame atomic absorption spectrometry. In optimal conditions, a linear calibration graph was achieved in the concentration range of 0.2‒30 ng·mL with a determination coefficient ( ) of 0.9953. The detection limit, the enhancement factor, inter- and intra-day relative standard deviations (for six consecutive extractions at the concentration level of 10 ng·mL ) were 0.04 ng·mL , 100, 2.38% and 1.52%, respectively. To evaluate the accuracy of the method, a certified reference material (NIST SRM 1643e) was analyzed, and there was a good agreement between the certified and the measured values. It was successfully utilized to determine cadmium in industrial wastewater samples and the attained relative recovery values were between 96.8% and 103.2%.

关键词: cadmium     magnetic solid-phase extraction     Fe3O4 nanoparticles     Fe3O4/salicylic acid nanocomposite     flame atomic absorption spectrometry    

Size and shape effects of MnFeO nanoparticles as catalysts for reductive degradation of dye pollutants

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 108-171 doi: 10.1007/s11783-021-1396-4

摘要: The magnetic nanoparticles that are easy to recycle have tremendous potential as a suitable catalyst for environmental toxic dye pollutant degradation. Rationally engineering shapes and tailoring the size of nanocatalysts are regarded as an effective manner for enhancing performances. Herein, we successfully synthesized three kinds of MnFe2O4 NPs with distinctive sizes and shapes as catalysts for reductive degradation of methylene blue, rhodamine 6G, rhodamine B, and methylene orange. It was found that the catalytic activities were dependent on the size and shape of the MnFe2O4 NPs and highly related to the surface-to-volume ratio and atom arrangements. Besides, all these nanocatalysts exhibit selectivity to different organic dyes, which is beneficial for their practical application in dye pollutant treatment. Furthermore, the MnFe2O4 NPs could be readily recovered by a magnet and reused more than ten times without appreciable loss of activity. The size and shape effects of MnFe2O4 nanoparticles demonstrated in this work not only accelerate further understanding the nature of nanocatalysts but also contribute to the precise design of nanoparticles catalyst for pollutant degradation.

关键词: Dye degradation     MnFe2O4 nanoparticles     Size and shape-control    

Rh<sub>2sub>O<sub>3sub>/hexagonal CePO<sub>4sub> nanocatalysts for N<sub>2sub>O decomposition

Huan Liu, Zhen Ma

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 586-593 doi: 10.1007/s11705-017-1659-6

摘要: Hexagonal CePO nanorods were prepared by a precipitation method and hexagonal CePO nanowires were prepared by hydrothermal synthesis at 150 °C. Rh(NO ) was then used as a precursor for the impregnation of Rh O onto these CePO materials. The Rh O supported on the CePO nanowires was much more active for the catalytic decomposition of N O than the Rh O supported on CePO nanorods. The stability of both catalysts as a function of time on stream was studied and the influence of the co-feed (CO , O , H O or O /H O) on the N O decomposition was also investigated. The samples were characterized by N adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron microscopy, hydrogen temperature-programmed reduction, oxygen temperature-programmed desorption, and CO temperature-programmed desorption in order to correlate the physicochemical and catalytic properties.

关键词: Rh2O3     CePO4     N2O decomposition    

Sulfur-deficient CoNi<sub>2sub>S<sub>4sub> nanoparticles-anchored porous carbon nanofibers as bifunctional

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1707-1717 doi: 10.1007/s11705-023-2308-x

摘要: Water electrolysis technology is considered to be one of the most promising means to produce hydrogen. Herein, aiming at the problems of high overpotential and slow kinetics in water splitting, N-doped porous carbon nanofibers-coupled CoNi2S4 nanoparticles are prepared as bifunctional electrocatalyst. In the strategy, NaCl is used as the template to prepare porous carbon nanofibers with a large surface area, and sulfur vacancies are created to modulate the electronic structure of CoNi2S4. Electron spin resonance confirms the formation of abundant sulfur vacancies, which largely reduce the bandgap of CoNi2S4 from 1.68 to 0.52 eV. The narrowed bandgap is conducive to the migration of valence electrons and decreases the charge transfer resistance for electrocatalytic reaction. Moreover, the uniform distribution of CoNi2S4 nanoparticles on carbon nanofibers can prevent the aggregation and facilitate the exposure of electrochemical active sites. Therefore, the composite catalyst exhibits low overpotentials of 340 mV@100 mA·cm–2 for oxygen evolution reaction and 380 mV@100 mA·cm–2 for hydrogen evolution reaction. The assembled electrolyzer requires 1.64 V to achieve 10 mA·cm–2 for overall water-splitting with good long-term stability. The excellent performance results from the synergistic effect of porous structures, sulfur deficiency, nitrogen doping, and the well-dispersed active component.

关键词: nanoparticle     sulfur vacancy     porous carbon nanofiber     transition metal sulfides     electrolysis    

含稀释剂的Al-Cr<sub>2sub>O<sub>3sub>体系燃烧合成反应热力学分析与反应模型

张衍诚,潘冶,张传

《中国工程科学》 2004年 第6卷 第6期   页码 63-67

摘要:

对含稀释剂Al203和Cr<sub>2</sub>0<sub>3</sub>的Al-Cr<sub>2</sub>0<sub>3</sub>体系燃烧合成反应进行了热力学计算与分析,讨论了起始反应温度T<sub>0</sub>、稀释剂Al<sub>2</sub>O<sub>3</sub>和Cr<sub>2</sub>O<sub>3</sub>的含量对绝热反应温度7^的影响,并得出T<sub>0</sub>与T<sub>ad</sub>在特定温度段上的近似线性关系以及该关系在指导材料成分设计上的应用;揭示了反应驱动力—&mdash

关键词: 金属陶瓷     燃烧合成     Al-Cr203体系     热力学     反应模型    

Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor

Shejiang Liu, Hongyang Yang, Yongkui Yang, Yupeng Guo, Yun Qi

《环境科学与工程前沿(英文)》 2017年 第11卷 第1期 doi: 10.1007/s11783-017-0902-1

摘要: Coprecipitation–oxidation method was developed to recover the iron from wastewater. Fe O nanoparticles were well synthesized from steel waste pickling liquor. Promoters greatly improved the properties of synthesized Fe O nanoparticle. Real-time control of the Fe /Fe molar ratio was achieved by ORP monitoring. Waste pickling liquors (WPLs) containing high concentrations of iron and acid are hazardous waste products from the steel pickling processes. A novel combined coprecipitation–oxidation method for iron recovery by Fe O nanoparticle production from the WPLs was developed in this study. An oxidation–reduction potential monitoring method was developed for real-time control of the Fe /Fe molar ratio. The key coprecipitation–oxidation parameters were determined using the orthogonal experimental design method. The use of promoters greatly improved the Fe O nanoparticle crystallinity, size, magnetization, and dispersion. X-ray diffraction patterns showed that the produced Fe O nanoparticles were single phase. The Fe O nanoparticles were approximately spherical and slightly agglomerated. Vibrating sample magnetometry showed that the Fe O nanoparticles produced from the WPLs had good magnetic properties, with a saturation magnetization of 80.206 emu·g and a remanence of 10.500 emu·g . The results show that this novel coprecipitation–oxidation method has great potential for recycling iron in WPLs.

关键词: Waste pickling liquor     Coprecipitation–oxidation     Fe3O4 nanoparticles     Oxidation–reduction potential     Promoter    

In-MOF-derived In<sub>2sub>S<sub>3sub>/Bi<sub>2sub>S<sub>3sub> heterojunction for enhanced photocatalytic

《能源前沿(英文)》 2023年 第17卷 第5期   页码 654-663 doi: 10.1007/s11708-023-0885-5

摘要: Transition metal sulfides are commonly studied as photocatalysts for water splitting in solar-to-fuel conversion. However, the effectiveness of these photocatalysts is limited by the recombination and restricted light absorption capacity of carriers. In this paper, a broad spectrum responsive In2S3/Bi2S3 heterojunction is constructed by in-situ integrating Bi2S3 with the In2S3, derived from an In-MOF precursor, via the high-temperature sulfidation and solvothermal methods. Benefiting from the synergistic effect of wide-spectrum response, effective charge separation and transfer, and strong heterogeneous interfacial contacts, the In2S3/Bi2S3 heterojunction demonstrates a rate of 0.71 mmol/(g∙h), which is 2.2 and 1.7 times as much as those of In2S3 (0.32 mmol/(g∙h) and Bi2S3 (0.41 mmol/(g∙h)), respectively. This paper provides a novel idea for rationally designing innovative heterojunction photocatalysts of transition metal sulfides for photocatalytic hydrogen production.

关键词: photocatalytic hydrogen production     wide-spectrum response     metal sulfides     MOFs derivative     heterogeneous interfacial contact    

The stabilization effect of Al<sub>2sub>O<sub>3sub> on unconventional Pb/SiO<sub>2sub> catalyst

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1423-1429 doi: 10.1007/s11705-023-2315-y

摘要: Similar to Sn, Pb located at the same group (IVA) in the periodic table of elements, can also catalyze propane dehydrogenation to propene, while a fast deactivation can be observed. To enhance the stability, the traditional carrier Al2O3 with a small amount, was introduced into Pb/SiO2 catalyst in this study. It has been proved that Al2O3 can inhibit the reduction of PbO, and weaken the agglomeration and loss of Pb species due to its enhanced interaction with Pb species. As a result, 3Al15Pb/SiO2 catalyst exhibits a much higher stability up to more than 150 h. In addition, a simple schematic diagram of the change of surface species on the catalyst surface after Al2O3 addition was also proposed.

关键词: Pb/SiO2     Al2O3     propane dehydrogenation     propene     stability    

Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 1-14 doi: 10.1007/s11705-022-2176-9

摘要: Newly synthesized functional nanoparticles, 3-amino-1,2,4-triazole (ATA)/SiO2–TiO2 were introduced to the polyurethane (PU) matrix. Electrochemical techniques were used to investigate the barrier properties of the synthesized PU–ATA/SiO2–TiO2 nanocomposite coated steel specimen. In natural seawater, electrochemical impedance spectroscopy experiments indicated outstanding protective behaviour for the PU–ATA/SiO2–TiO2 coated steel. The coating resistance (Rcoat) of PU–ATA/SiO2–TiO2 was determined to be 2956.90 kΩ·cm–2. The Rcoat of the PU–ATA/SiO2–TiO2 nanocomposite coating was found to be over 50% higher than the PU coating. The current measured along the scratched surface of the PU–ATA/SiO2–TiO2 coating was found to be very low (1.65 nA). The enhanced ATA/SiO2–TiO2 nanoparticles inhibited the entry of electrolytes into the coating interface, as revealed by scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray diffraction analysis of the degradation products. Water contact angle testing validated the hydrophobic nature of the PU–ATA/SiO2–TiO2 coating (θ = 115.4°). When the concentration of ATA/SiO2−TiO2 nanoparticles was 2 wt %, dynamic mechanical analysis revealed better mechanical properties. Therefore, the newly synthesised PU–ATA/SiO2–TiO2 nanocomposite provided excellent barrier and mechanical properties due to the addition of ATA/SiO2–TiO2 nanoparticles to the polyurethane, which inhibited material degradation and aided in the prolongation of the coated steel’s life.

关键词: SiO2/TiO2 nanoparticle     nanocomposite coatings     dynamic mechanical analysis     electrochemical techniques     corrosion     colloids and interfaces    

标题 作者 时间 类型 操作

Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and sacrificing nanofillers

期刊论文

Formation of CaCO hollow microspheres in carbonated distiller waste from Solvay soda ash plants

期刊论文

Enhanced 4-chlorophenol biodegradation by integrating FeO nanoparticles into an anaerobic reactor: Long-term

期刊论文

osmosis coupled with lime-soda ash softening for volume minimization of reverse osmosis concentrate and CaCO<sub>3sub> recovery: A case study on the coal chemical industry

Jiandong Lu, Shijie You, Xiuheng Wang

期刊论文

Fe<sub>3sub>O<sub>4sub> encapsulated mesoporous silica nanospheres with tunable size and large void

Tingting LIU, Lihong LIU, Jian LIU, Shaomin LIU, Shi Zhang QIAO

期刊论文

Effects of iron oxide nanoparticles on phenotype and metabolite changes in hemp clones ( L.)

期刊论文

A magnetic adsorbent based on salicylic acid-immobilized magnetite nano-particles for pre-concentration of Cd(II) ions

Hossein Abdolmohammad-Zadeh, Arezu Salimi

期刊论文

Size and shape effects of MnFeO nanoparticles as catalysts for reductive degradation of dye pollutants

期刊论文

Rh<sub>2sub>O<sub>3sub>/hexagonal CePO<sub>4sub> nanocatalysts for N<sub>2sub>O decomposition

Huan Liu, Zhen Ma

期刊论文

Sulfur-deficient CoNi<sub>2sub>S<sub>4sub> nanoparticles-anchored porous carbon nanofibers as bifunctional

期刊论文

含稀释剂的Al-Cr<sub>2sub>O<sub>3sub>体系燃烧合成反应热力学分析与反应模型

张衍诚,潘冶,张传

期刊论文

Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor

Shejiang Liu, Hongyang Yang, Yongkui Yang, Yupeng Guo, Yun Qi

期刊论文

In-MOF-derived In<sub>2sub>S<sub>3sub>/Bi<sub>2sub>S<sub>3sub> heterojunction for enhanced photocatalytic

期刊论文

The stabilization effect of Al<sub>2sub>O<sub>3sub> on unconventional Pb/SiO<sub>2sub> catalyst

期刊论文

Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties

期刊论文